Short- and Long-Term Cognitive and Behavioral Effects of Premature Birth

Doug Bodin, PhD, ABPP/CN
Pediatric Neuropsychologist
Nationwide Children’s Hospital
Assistant Clinical Professor of Pediatrics
Ohio State University College of Medicine, Columbus, OH

The speaker has signed a disclosure form and indicated he has no significant financial interest or relationship with the companies or the manufacturer(s) of any commercial product and/or service that will be discussed as part of this presentation.

Session Summary

During this session a review of the short- and long-term cognitive and behavioral effects of prematurity will be discussed. A review of the medical risk factors contributing the possible cognitive and behavior problems in children born premature will be reviewed.

Session Objectives

Upon completion of this presentation, the participant will:

- understand the central nervous system effects of prematurity;
- understand associated cognitive effects of prematurity;
- understand the behavioral and psychological effects of prematurity.

References

Session Outline

See presentation handout on the following pages.
Short and Long term cognitive and behavioral effects of premature birth
Doug Bodin, Ph.D., ABPP/CN

Primary questions
1. What are the short-term and long-term consequences of premature birth on development?
2. How can we identify those children at greatest risk for poor outcomes so that we can recommend appropriate services?

Outline
• Neuroanatomy and Neuropathology of prematurity
• Methodological issues
• Lifespan outcomes
 • Case examples
• Risk Factors

Neuroanatomy review
Everything you need to know about Neuroanatomy:
• http://www.youtube.com/watch?feature=player_embedded&v=FQjgsQ5G8ug
Perhaps a more simplistic view:
• http://www.youtube.com/watch?v=snO68aJTOP

Neurons

White and Gray Matter
White matter
Gray matter
Brain Development

First Trimester
- Development of neural tube
- Production of neurons
- Basic axonal pathways of brainstem
- Migration of cells
- Differentiation of cells

Brain Development

Second Trimester
- Basic wiring of brain (large patterns of connectivity between neural regions)
- Connections of thalamus to the cortex
- Intracortical pathways begin to establish
- Appearance of corpus callosum
- Organized cell death (apoptosis)
- First motor activity of fetus

Brain Development

Third Trimester
- Reciprocal connectivity from higher-order cortical areas to primary areas
- Initial myelination
- Large descending pathways from cortex
- Synaptic connections between neocortex and related structures
- Total Brain volume increases 2.7 fold
- Cortical gray matter increases 4 fold
- Myelinated white matter increases 5 fold

Neuropathology

Two primary processes:
- Hypoxic ischemia
- Exposure to maternal infection

Neuropathology

Primary brain abnormalities
- Periventricular Leukomalacia (PVL)
 - 5 – 15% of VLBW kids
- Intraventricular Hemorrhage (IVH)
 - 10 – 25% of VLBW kids
- Ventricular Dilation (reduced cortical volume)
Neuropathology

What brain regions are affected?
• Subcortical structures
 • Basal Ganglia, hippocampus, etc.
• White matter circuits

Defining prematurity
Based on Birth weight – preferred method in research
• Low Birth weight (LBW): < 2,500 g
• Very Low Birth weight (VLBW): < 1,200 g
• Extremely Low Birth weight (ELBW): < 1,000 g
Based on Gestational age: not as precise
• Preterm birth: < 37 weeks
• Very preterm birth: < 32 weeks
• Extremely preterm birth: < 29 weeks

Measuring outcomes
• Global outcome measures
 • IQ
• Specific cognitive domains
 • Attention
 • Memory
• Functional domains
 • School performance
 • Adaptive functioning

Outline
• Neuroanatomy and Neuropathology of prematurity
• Methodological issues
• Lifespan outcomes
 • Case examples
 • Risk factors

Early outcomes
• Infancy
 • Decreased memory, processing speed, attention, and mental representation as young as 7 months
 • Increased irritability and poor emotional regulation
• Toddlers/Preschoolers
 • Working memory and Executive deficits
 • Motor skills, language, and attention
Case Example #1

- 4 year old boy
- International adoption
 - Early neglect
- 28 weeks gestation
 - Birth weight unknown
- Birth asphyxia suspected
- Prolonged mechanical ventilation
- MRI: mild PVL
- Abnormal EEG but no clinical seizures

Case Example #1

- O.T., P.T. and S.L. therapies
- Special needs preschool
- Concerns: attention, hyperactivity, comprehension problems
- Evaluation results
 - Below average IQ
 - Language deficits
 - Visual-perceptual deficits
 - Attention problems
 - Adaptive and academic deficits

Case example #2

- 3 year old girl
- 24 weeks gestational age
- 652 grams
- BPD
- Normal neonatal ultrasound

Case example #2

- Delayed development
- O.T. in the past
- Not in preschool
- Concerns: language and behavior
- Evaluation results
 - Average IQ, language, and school readiness skills
 - Low average adaptive skills
 - Poor emotional regulation and attention

School age outcomes

- Lower school readiness skills
- Deficits in: executive functioning, attention, memory, perceptual-motor skills, and visual processing
 - Not due to neurological or sensory problems
- Speech-language problems less prominent at this age
- Adaptive and social deficits emerge
- Pronounced math problems
 - High rates of special education services
- Increase in symptoms of ADHD
 - ~ 23% rate of ADHD diagnosis

Case Example #3

- 7 year old boy
- 27 weeks gestation
- 907 grams
- Grade 2 IVH
- Developmental delays
- Family history of learning problems
Case Example #3

- Completed special needs preschool
- In 1st grade with special education
- Concerns: memory, comprehension, hyperactivity
- Evaluation results:
 - Impaired IQ and adaptive functions
 - Global mild to moderate deficits
 - Dx mild intellectual disability

Case Example #4

- 11 year old girl
- 23 weeks gestation
- 680 grams
- BPD
- Grade 1 IVH and PVL (right greater than left)
- Mild craniofacial abnormalities

Case Example #4

- Developmental delays
- Diagnosed with ADHD
- O.T., P.T., and S.L. therapies as young child
- 5th grade homeschooled
- Concerns: organization, memory, frustration tolerance, social immaturity

Evaluation results:
- Verbal IQ = 119; Nonverbal IQ = 94
- Nonverbal deficits
- Deficits in planning and problem solving (executive functions)
- Fine motor deficits
- Above average reading but below average math
- Concerns with anxiety and mood

Adolescence and Young adulthood

- Executive deficits
- Lower high school graduation rates
- Lower college attendance
- Higher rates of anxiety/depression (especially in females)
- Lower rates of substance use

Taylor, 2010
Case example #5

- 19 year old male
- 27 weeks gestation (twin pregnancy)
 - Twin sister is intellectually disabled
 - Medical records not available
 - Diagnosed with ADHD
 - Untreated sleep apnea

Case Example #5

- Problems with motivation and attention since high school
- Now in Freshman year at a community college
- GPA = 3.0
- Daily MJ user
- Future: law enforcement or real estate

Evaluation results
- Average IQ
- Deficits: Attention, Executive functions, memory, and fine motor skills
- Language and visual spatial skills are intact

Effects on the Family

- Increased parental stress and burden
- Decreased parental well being
- Greater effects in children with persisting health problems
- Greater effects in the ELBW group
- Evidence for resiliency
 - Increased bonding

Primary questions

1. What are the short-term and long-term consequences of premature birth on development?
2. How can we identify those children at greatest risk for poor outcomes so that we can recommend appropriate services?
 - Significant variability
 - Early deficits are documented
 - Nonverbal and attention/executive deficits emerge over time
 - Math is often a weakness
 - Family functioning can be affected
Outline

- Neuroanatomy and Neuropathology of prematurity
- Methodological issues
- Lifespan outcomes
 - Case examples
- Risk Factors

Biological risk factors

- Chronic lung disease
 - Predicts global impairment
- Brain ultrasound abnormalities
 - PVL, IVH, Ventricular Dilation
 - Predict nonverbal skills better than verbal
- Birthweight
 - Risk for developmental impairment
 - 40-63% with < 750 g
 - 20 - 38% with 750 – 1,499 g
 - 8 – 8% with 1,500 – 2,500 g
 - 5 % with term controls

IVH Grading

- Risk of neurodevelopmental disability (Volpe, 2000)
 - Grade I: 5 - 10%
 - Grade II: 15 – 20%
 - Grade III: 35 – 55%
 - Grade IV: > 90%

Environmental risk factors

- Socioeconomic status
- Parental distress
- Caretaker burden
- Family Resources
- Home and school supports
 - Can be moderators of outcomes

Gender

- Boys
 - Poorer outcomes
 - Greater susceptibility to perinatal insults to brain and lungs
Biopsychosocial Model
(Taylor, 2010)

Biological Risk
Neuropsychological deficits
Learning problems
Social-behavioral problems

Direct and moderating environmental effects

Primary questions

- What are the short-term and long-term consequences of premature birth on development?
- How can we identify those children at greatest risk for poor outcomes so that we can recommend appropriate services?
 - Biological risks
 - Environmental risks
 - Protective factors