Cardiology Review

Nicole Bowie, NNP-BC, PNP
Neonatal Nurse Practitioner
Jackson Memorial Hospital
Miami, FL

The speaker has signed a disclosure form and indicated she has no significant financial interest or relationship with the companies or the manufacturer(s) of any commercial product and/or service that will be discussed as part of this presentation.

Session Summary

This presentation will provide an overview of cyanotic, acyanotic, obstructive, and other congenital heart defects. There will also be a brief discussion regarding tachy arrhythmias, brady arrhythmias, and pulseless arrests, as well as compensated, decompensated, and irreversible shock.

Session Objectives

Upon completion of this presentation, the participant will:

- understand fetal circulation;
- understand assessment of the cardiac system;
- be able to discuss tachy and brady arrhythmias
- be able to recognize congenital heart disease, including
 - acyanotic lesions
 - obstructive lesions
 - cyanotic lesions

Test Questions

1. Infants with Tetralogy of Fallot who experience “hypoxic tet spells” are placed in knee chest position in order to:
 a. Increase the left to right shunting
 b. Increase the systemic vascular resistance
 c. Decrease the systemic vascular resistance

2. A 3-month-old with Down syndrome exhibits poor weight gain, tachypnea and grade 2/6 murmur. CX reveals cardiomegaly. Of the following, which is the MOST likely diagnosis?
 a. Coarctation of the aorta
 b. Complete atrioventricular septal defect
 c. Perimembranous VSD
3. A pan systolic murmur is noted on exam and the infant also has bilateral ventricular dilatation on ECHO and increased pulmonary vascularity on CXR. The likely etiology is:
 a. Large PDA
 b. Large VSD
 c. Pulmonary stenosis

4. A 28-week old infant on DOL 5 has a symptomatic PDA, he may experience which of the following symptoms:
 a. Oliguria
 b. Hypertension
 c. Weak radial pulses

5. Pulmonary vascularity is decreased in all of the below except:
 a. Tetralogy of Fallot
 b. TAPVR
 c. Tricuspid atresia

References

Session Outline

See presentation handout on the following pages.
Cardiology Review
Nicole Thompson-Bowie, NNP-BC, PNP

Embryology
- Begins developing between the 3rd to 7th week gestation with completion at 10 weeks
- 1st organ to function in utero
- Fetal heartbeat can be heard at 6wks
- Starts as long structure with 2 tubes

Embryology
- Elongates & Twists to Right
- Separates the Atria and Ventricles
- Formation of Valves
 - Mitral & Tricuspid
 - Great Vessel Formation
 - Aorta, Pulmonary Arteries and Vein
The Heart

- The heart consists of four chambers
- Valves that open and close to allow blood to enter and leave these vessels and chambers.
- S1 = Closing of TV and MV (AV valves)
- S2 = Closing of AV and PV (semilunar valves)

Fetal Circulation

Things unique to Fetal Circulation
- Foramen Ovale
- Ductus Arteriosus
- Ductus Venosus
- Placenta
- Umbilical Vessels
- Dominant Right Heart – pumping 2/3 of combined ventricular output

Parallel Circulation

High pulmonary vascular resistance

Low resistance placenta
Extrauterine Cardiovascular Changes

- Pulmonary Vascular resistance (PVR)
- Systemic Vascular Resistance (SVR)
- Ductus Arteriosus closes
 - Oxygen and PGE2 lessens
- Ductus Venosus closes
- Foramen Ovale closes

Cardiac Output

Cardiac Output (CO)

- The volume of blood ejected by the heart in 1 minute
- CO = stroke volume x heart rate
 - 200 ml/kg/min
 - Neonates increase HR in response to low CO

Stroke Volume (SV) is the difference between the ventricular end diastolic volume and the end systolic volume (1.5ml/kg)

- SV is affected by preload, contractility and afterload

Conduction System

Preload and Afterload

- Preload: volume entering ventricles
- Afterload: resistance left ventricle must overcome to circulate blood

Contractility (inotropy)

- The speed of ventricular contraction
- Contractility is affected by Catecholamine - increase contractility
- Acidosis, hypoxia... decrease contractility
Blood pressure

- Measurement of the pressure on the walls of the vessels as blood is pumped
- Determined by
 - Peripheral vascular resistance
 - Cardiac output
- Systolic: end of each heart contraction
- Diastolic: immediately before each contraction.
- Pulse pressure
 - Widened= PDA (blood runs off into pulmonary artery during diastole)
 - Narrow= pericardial tamponade, intravascular depletion and ECMO pt

Shock

- State of inadequate circulatory blood volume
- Results in decreased perfusion and oxygenation to tissues → lactic acidosis → heart failure
- Hypovolemic: loss of volume
 - Acute blood loss, pleural effusion, skin disruption
- Cardiogenic
 - Heart fails due to tamponade, tension pneumothorax, CHD
- Distributive- sepsis, body release toxins

Assessment of Cardiac

- Physical Assessment & History
- Observation
- Auscultation
- Palpation : PMI
- Diagnostics
 - EKG
 - Chest XRAY
 - Hyperoxia Test
 - Pre and Post Ductal Saturations
 - Echocardiogram

Sounds

- S1: closure of MV/TV
- S2: closure of Ao/pulmonic valve. Should be split!
- S3: extra sound may be normal in newborn related to ventricle filling.
- S4: rare, myocardial disease
Murmur

- Turbulent blood flow
- Innocent versus pathologic murmurs
 - FT infant may have murmur @24-48hr due to PDA closing → benign
- Location
- Intensity (1-6)
- Radiation
- Timing
 - Continuous: pathologic
 - Systole: usually benign
 - Diastole: PATHOLOGIC

Murmur Types

<table>
<thead>
<tr>
<th>Condition</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>Harsh pansystolic LLSB</td>
</tr>
<tr>
<td>PDA</td>
<td>Continuous machinery</td>
</tr>
<tr>
<td>Truncus Arteriosus</td>
<td>Harsh systolic, single S2</td>
</tr>
<tr>
<td>Valvular Stenosis</td>
<td>Loud ejection click</td>
</tr>
<tr>
<td>PPS</td>
<td>Radiates to axilla and back</td>
</tr>
<tr>
<td>qTIA</td>
<td></td>
</tr>
</tbody>
</table>

Common Electrolyte Disturbances

- Hyperkalemia= peaked T waves
- Hypokalemia= prominent U waves
- Hypercalcemia= short Qt interval
- Hypocalcemia= prolonged Qt interval

Dysrhythmias

- Brady arrhythmias
 - Sinus Bradycardia
 - Heart Block
- Tachyarrhythmia
 - Sinus tachycardia
 - Supraventricular Tachycardia
Supraventricular tachycardia (SVT)

- Heart rate sustained at > 220 bpm
- Treatment
 - Ice
 - Vagal maneuver
 - Adenosine: rapid infusion 1-2 sec followed by NS
- Cardioversion may be needed

Congenital Heart Disease

- <1% of all newborns,
- Prenatal Dx in about 50-80% of the time
- 30% of patients with chromosomal anomalies have CHD
- Multifactorial causes (90% of cases)
- Biggest risk factor = Family History of CHD

Incidence of Defects

<table>
<thead>
<tr>
<th>Acyanotic Heart Disease</th>
<th>Obstructive Lesions</th>
<th>Cyanotic Heart Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial septal defect (ASD)</td>
<td>Aortic stenosis (AS)</td>
<td>Transposition of the great arteries (TGA)</td>
</tr>
<tr>
<td>Ventricular septal defect (VSD)</td>
<td>Pulmonary stenosis (PS)</td>
<td>Tetralogy of fallot (TOF)</td>
</tr>
<tr>
<td>Patent ductus arteriosus (PDA)</td>
<td>Coarctation of the aorta (CoA)</td>
<td>Total anomalous pulmonary venous return (TAPVR)</td>
</tr>
<tr>
<td>Atrioventricular Canal</td>
<td>Truncus arteriosus (TA)</td>
<td>Tricuspid atresia</td>
</tr>
<tr>
<td>Pulmonary Stenosis (5-6%)</td>
<td></td>
<td>Pulmonary atresia</td>
</tr>
<tr>
<td>Tetralogy of Fallot (8-16%)</td>
<td></td>
<td>Hypoplastic left heart (HLHS)</td>
</tr>
<tr>
<td>VSD 20-25%</td>
<td></td>
<td>Ebstein's anomaly</td>
</tr>
</tbody>
</table>

Surgical repair is now successful and routine, with an overall mortality of < 4% nationally.
I. Acyanotic Heart Defects

- Left to Right shunt
- Cardiomegaly
- Increased pulmonary vascular markings
- CHF when PVR drops
- Pulmonary over circulation

Patent Ductus Arteriosus

- Stealing effect from systemic circulation & the increased pulmonary blood flow

<table>
<thead>
<tr>
<th>Hypotension</th>
<th>Oliguria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral vasoconstriction</td>
<td>Metabolic acidosis</td>
</tr>
<tr>
<td>Hyper dynamic precordium</td>
<td>Widened pulse pressure</td>
</tr>
<tr>
<td>Pulmonary edema; CHF</td>
<td>Respiratory distress</td>
</tr>
<tr>
<td>Continuous Loud machinery murmur</td>
<td></td>
</tr>
</tbody>
</table>

Management of PDA:

- Term Infant
- Coiling closure at 3 months
- Preterm infant
- Conservative: Fluid restriction & Diuretics
- Hemodynamically significant PDA
 - Indomethacin/ibuprofen
 - Surgical Ligation

ASD

Hemodynamics
- Oxygenated blood from the left atrium is shunted to the right atrium then into the right ventricle and back to the lungs
- Rarely get CHF
- Systolic ejection murmur
- The increased volume and work of the RV leads to RV hypertrophy

Management
- Treat CHF
- Intractable CHF: surgical repair is necessary
VSD

- Most common CHD
- FLOW: L→R shunting via ventricular septum causing increased pulmonary blood flow
- Harsh pan systolic (holosystolic) murmur
- Urgency depends on size of VSD
 - Small: usually resolves by itself
 - Large: causes CHF in 6-8 weeks

Management of VSD

Mild VSD
 - Fluid restriction, Diuretics, Digoxin
Moderate to severe VSD
 - pulmonary banding, suturing or patching the of the defect

Atrioventricular Canal

- Abnormal development of the endocardial cushion
- Common in Down syndrome

Complete AV Canal	Partial AV canal
1 valve | Mitral regurgitation
VSD

- Treatment
 - PA Banding
 - AD, VSD closure and reconstruction of valve

Congestive Heart Failure

- The heart no longer able to pump adequate amount of blood to meet the needs of the body
- Results in systemic and venous congestion
- Can be caused by such things as CHD, infection, severe anemia, birth asphyxia and dysrhythmias

- Tachycardia, tachypnea,
- sudden weight gain or poor weight gain
- Poor feeding
- Hepatomegaly
- Arrhythmias
- Cardiomegaly

Eisenmenger's Syndrome
II. Lesions Obstructing Blood Flow

- Pulmonary Stenosis (PS)
- Aortic Stenosis (AS)
- Coarctation of the Aorta (CoAo)

Pulmonary Stenosis

- Obstruction of blood flow to pulmonary bed
- May be valvular (90%), subvalvular, or supravalvular
- Usually associated with large VSD
- Sudden death is possible in more severe PS (Critical PS)
- Harsh Systolic ejection murmur

Aortic Stenosis

- Obstruction of Blood flow to body

Types:
- Valvular
- Supravalvular: usually associated with William’s Syndrome
- Subvalvular
- Peripheral pulses are weak and thready
- Narrow pulse pressure is present in severe AS
Coarctation of the Aorta

- Strong pulses in upper extremities compared to lower extremities
- Severe cases may have LV pressure overload
- Loud S3 gallop is usually present

<table>
<thead>
<tr>
<th>Mild</th>
<th>Headaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod</td>
<td>CHF</td>
</tr>
<tr>
<td>Severe</td>
<td>Shock</td>
</tr>
</tbody>
</table>

Management

- Treat the heart failure (digoxin & Lasix)
- Prostin
- Surgical Intervention
 - Anastomosis
 - Grafting
 - Balloon angioplasty

III. Cyanotic Heart Lesions

There has to be a RIGHT to left shunt to cause CYANOSIS

ST’s
- Transposition of Great Arteries
- Tetralogy of Fallot
- Tricuspid Atresia
- Truncus Arteriosus
- TAPVR
- Ebstein’s Anomaly
- Single Ventricle
- Pulmonary Atresia

Transposition of Great Arteries

- The aorta arises from the RV and the PA arises from the LV
- Hyoxia and cyanosis
- Survival is dependent on the communication between the 2 “parallel” circuits
 - VSD, ASD, PDA
- The amount of blood flows into and out of the pulmonary circulation must be equal
- Egg on string CXR
- Most common cyanotic lesion in NEWBORN period
TGA Management

- Prostin dependent
- Balloon septostomy

TGA - XRAY

- Egg on a string

Tetralogy of Fallot

- **MOST COMMON CYANOTIC HEAR DISEASE**
- Includes 4 abnormalities:
 1) RVOT obstruction
 2) RVH
 3) VSD
 4) overriding of the aorta
- Severity depends on pulmonary stenosis degree

Management of TOF

- Treat CHF
- Prostin
- Surgical
 - Blalock-Taussig Shunt
 - Total surgical correction 3-6 months

Cyanosis	Sats 75-85%
Right shaped heart
Tet (Hypoxic) Spells | Knee chest, morphine, O2, beta blocker
Murmur SEM
TOF- XRAY

Booth shape heart on X-RAY

Total Anomalous Pulmonary Venous Return

Excuse me, what atrium was I suppose to connect to????

The pulmonary veins drain oxygenated blood directly or indirectly into the right atrium instead of the left atrium

TAPVR

- Obstructive \rightarrow cyanosis due to R\rightarrow L mixing at ASD level
- Nonobstructive \rightarrow CHF
- XRAY: Snowman Heart
- Surgical Correction: The pulmonary veins are reconnected to the left atrium and the ASD is closed. Performed within the first weeks after the child’s birth

TAPVR XRAY

- Snowman
Truncus Arteriosus

- Only a single arterial trunk leaves the heart – supplies pulmonary, systemic and coronary circulation
- Large VSD is always present
- Cyanosis varies and depends on the amount of Pulmonary blood flow
- Associated with DiGeorge syndrome

Truncus Arteriosus Management

- Rastelli Operation
- Conduit is placed from the Right Ventricle to the Pulmonary Artery

Tricuspid Atresia

- Tricuspid valve is absent, RV and PA are Hypoplastic with decreased PBF
- 1-2% of all CHD
- ASD, VSD, or PDA are necessary for survival
- Single S2

Management of Tricuspid Atresia

- B-T Shunt
- Glenn
- Fontan
Pulmonary Atresia

- Communication at the atrial level is necessary for life
- These patients are duct dependent
- Single S2

Ebstein’s Anomaly

- Extremely large heart
- Abnormal development of the tricuspid valve
- Weak TV\(\rightarrow\)PVR\(\rightarrow\) Cyanosis

Ebstein’s Anomaly

- Treatment
 - Prostin
 - Treat heart failure
 - Pulmonary artery banding
 - Surgery

Hypoplastic Left Heart Syndrome

- 1 – 2% of all CHD

<table>
<thead>
<tr>
<th>Left Heart Underdeveloped</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LV Hypoplastic</td>
</tr>
<tr>
<td>2. Aortic Valve atresia or stenosis</td>
</tr>
<tr>
<td>3. Mitral valve atresia or stenosis</td>
</tr>
<tr>
<td>4. Aortic arch Hypoplastic</td>
</tr>
</tbody>
</table>

- Must have PFO/ASD – allow LA to receive oxygenated blood
- PDA dependent to ensure systemic circulation
HLHS

Presentation- HLHS
Cyanosis
Cardiogenic shock with PDA closure
Signs an symptoms of CHF
Poor perfusion : pulmonary over-circulation
Sever metabolic acidosis

Hypoplastic Left Heart Syndrome

Medical Management:
• Compassionate Care
• PGE1 infusion
• Must balance circuit of pulmonary and systemic circulation
• Keep sats 75 to 85%
• Avoid excessive pulmonary vasodilation
 → PBF → CHF

Surgical Management:
• Norwood: rebuild the tiny ascending aorta
• Stage II: Glenn Operation
• State III: Fontan procedure
• Cardiac Transplant

Rule of 4’s in Cardiac Patient

• pH= should be 7.40
 • Acidosis= lactic acid build up= muscle fatigue= bad cardiac contractility and function

• CO2= in the 40’s
 • respiratory acidosis

• Hematocrit= at least 40
 • Need higher Oxygen carrying capacity

• Potassium= level in the 4 range
 • Na/K pump regulates influx of electrical impulses to regulate heart muscle contraction.
 • Hyperkalemia can create lethal arrythmias

Maternal Diabetes | Hypertrophic cardiomyopathy, TGA, VSD
Maternal Lupus | Heart Block
Maternal Alcohol Abuse | TGF
Maternal Rubella | PDA, PPS
Down’s syndrome | 40% have CHD, AVC, VSD most common
Turner syndrome | Coarctation of the aorta
DiGeorge Syndrome | Truncus arteriosus